李心亮
  • 教育程度:博士

  • 职称:博士后

  • 电话:

  • 邮箱:lixinliangmaths@163.com

  • 地址:汇星楼404

教程程度 博士 职称 博士后
电话 邮箱 lixinliangmaths@163.com
地址 汇星楼404 教育经历 2019.9-2023.6 厦门大学 博士;
2012.9-2019.6 山东理工大学 本科 硕士
工作经历 研究领域 流体力学中偏微分方程解的性态研究
获得荣誉 教学课程 线性代数
科研成果 [1] Li, Xinliang; Tan, Zhong; Xu, Saiguo. Global existence and decay estimates of solutions to the MHD-Boussinesq system with stratification effects. Nonlinearity, 35 (2022), no. 12, 6067-6097. </br>
[2] Xu, Fuyi; Li, Xinliang. On the global existence and time-decay rates for a parabolic-hyperbolic model arising from chemotaxis. Commun. Contemp. Math. 25 (2023), no. 3, Paper No. 2150078, 28 pp. </br>
[3] Li, Xinliang; Tan, Zhong. Global well-posedness for the 2D micropolar Bénard convection system with mixed partial viscosity. J. Math. Anal. Appl. 516 (2022), no.1, Paper No. 126495, 32 pp. </br>
[4] Li, Xinliang; Tan, Zhong. Stability and large-time behavior of the inviscid Boussinesq system for the micropolar fluid with damping. J. Math. Phys. 63 (2022), no. 4, Paper No. 041509, 18 pp. </br>
[5] Li, Xinliang; Tan, Zhong. Global well-posedness for the 2D micropolar Bénard fluid system with mixed partial dissipation, angular viscosity and without thermal diffusivity. Z. Angew. Math. Phys. 73 (2022), no. 2, Paper No. 83, 12 pp. </br>
[6] Xu, Fuyi; Li, Xinliang; Cui, Yujun; Wu, Yonghong. A scaling invariant regularity criterion for the 3D incompressible magneto-hydrodynamics equations. Z. Angew. Math. Phys. 68 (2017), no. 6, Paper No. 125, 8 pp. </br>
[7] Xu, Fuyi; Li, Xinliang; Wang, Chengli. The large-time behavior of the multi-dimensional hyperbolic-parabolic model arising from chemotaxis. J. Math. Phys. 60 (2019), no. 9, 091509, 12 pp. </br>
[8] Li, Xinliang; Tan, Zhong. Global well-posedness for the 3D damped micropolar Bénard system with zero thermal conductivity. Appl. Math. Lett. 117 (2021), Paper No. 107103, 6 pp. </br>
[9] Li, Xinliang; Xu, Fuyi. Some blow-up criteria in terms of pressure for the 3D viscous MHD equations. Appl. Math. (Warsaw) 45 (2018), no. 2, 293–300.
科研项目

个人简介

教育经历

  • 2019.9-2023.6 厦门大学 博士; 2012.9-2019.6 山东理工大学 本科 硕士

工作经历

研究领域

  • 流体力学中偏微分方程解的性态研究

获得荣誉

教学课程

  • 线性代数

科研成果

  • [1] Li, Xinliang; Tan, Zhong; Xu, Saiguo. Global existence and decay estimates of solutions to the MHD-Boussinesq system with stratification effects. Nonlinearity, 35 (2022), no. 12, 6067-6097.
    [2] Xu, Fuyi; Li, Xinliang. On the global existence and time-decay rates for a parabolic-hyperbolic model arising from chemotaxis. Commun. Contemp. Math. 25 (2023), no. 3, Paper No. 2150078, 28 pp.
    [3] Li, Xinliang; Tan, Zhong. Global well-posedness for the 2D micropolar Bénard convection system with mixed partial viscosity. J. Math. Anal. Appl. 516 (2022), no.1, Paper No. 126495, 32 pp.
    [4] Li, Xinliang; Tan, Zhong. Stability and large-time behavior of the inviscid Boussinesq system for the micropolar fluid with damping. J. Math. Phys. 63 (2022), no. 4, Paper No. 041509, 18 pp.
    [5] Li, Xinliang; Tan, Zhong. Global well-posedness for the 2D micropolar Bénard fluid system with mixed partial dissipation, angular viscosity and without thermal diffusivity. Z. Angew. Math. Phys. 73 (2022), no. 2, Paper No. 83, 12 pp.
    [6] Xu, Fuyi; Li, Xinliang; Cui, Yujun; Wu, Yonghong. A scaling invariant regularity criterion for the 3D incompressible magneto-hydrodynamics equations. Z. Angew. Math. Phys. 68 (2017), no. 6, Paper No. 125, 8 pp.
    [7] Xu, Fuyi; Li, Xinliang; Wang, Chengli. The large-time behavior of the multi-dimensional hyperbolic-parabolic model arising from chemotaxis. J. Math. Phys. 60 (2019), no. 9, 091509, 12 pp.
    [8] Li, Xinliang; Tan, Zhong. Global well-posedness for the 3D damped micropolar Bénard system with zero thermal conductivity. Appl. Math. Lett. 117 (2021), Paper No. 107103, 6 pp.
    [9] Li, Xinliang; Xu, Fuyi. Some blow-up criteria in terms of pressure for the 3D viscous MHD equations. Appl. Math. (Warsaw) 45 (2018), no. 2, 293–300.

科研项目