学术报告

当前位置: 首页 学术报告 正文
学术报告一百五十:Two-Person Zero-Sum Linear-Quadratic Games for Mean-Field Stochastic Differential Equations

时间:2021-12-08 10:09

主讲人 讲座时间
讲座地点 实际会议时间日
实际会议时间年月

菲律宾环球360注册账号学术报告[2021] 150

(高水平大学建设系列报告650)

报告题目: Two-Person Zero-Sum Linear-Quadratic Games for Mean-Field Stochastic Differential Equations

报告人: 王寒霄 博士   新加坡国立大学

报告时间:2021129  下午19:00

直播平台及链接: 腾讯会议会议号: 274-220-963

https://meeting.tencent.com/dm/ttIIjQauhJwS  

报告内容:The talk is concerned with two-person zero-sum mean-field linear-quadratic stochastic differential games over finite horizons. By a Hilbert space method, a necessary condition and a sufficient condition are derived for the existence of an open-loop saddle point. It is shown that under the sufficient condition, the associated two Riccati equations admit unique strongly regular solutions, in terms of which the open-loop saddle point can be represented as a linear feedback of the current state. When the game only satisfies the necessary condition, an approximate sequence is constructed by solving a family of Riccati equations and closed-loop systems. The convergence of the approximate sequence turns out to be equivalent to the open-loop solvability of the game, and the limit is exactly an open-loop saddle point, provided that the game is open-loop solvable.

报告人简历:王寒霄,2014 年本科毕业于吉林大学,2020 年博士毕业于复旦大学,导师为雍炯敏教授。博士期间在美国中佛罗里达大学联合培养近2 年。2020 9 月至今为新加坡国立大学数学系博士后。主要从事随机控制和随机分析的研究。已在Ann.I.H.PESAIM COCVJDE等期刊发表多篇学术论文。

欢迎感兴趣的师生参加!

                          菲律宾环球360注册账号

 

                                                2021127