学术报告

当前位置: 首页 学术报告 正文
学术报告一百二十九:Intrinsic Riemannian Functional Data Analysis for Sparse Longitudinal Observations

时间:2021-11-30 11:32

主讲人 讲座时间
讲座地点 实际会议时间日
实际会议时间年月

菲律宾环球360注册账号学术报告[2021] 129

(高水平大学建设系列报告629)

报告题目: Intrinsic Riemannian Functional Data Analysis for Sparse Longitudinal Observations

报告人:  姚方 教授  (北京大学

报告时间:120214:10-15:10

腾讯会议:928884267  

报告内容:

A new framework is developed to intrinsically analyze sparsely observed Riemannian functional data. It features four innovative components: a frame-independent covariance function, a smooth vector bundle termed covariance vector bundle, a parallel transport and a smooth bundle metric on the covariance vector bundle. The introduced intrinsic covariance function links estimation of covariance structure to smoothing problems that involve raw covariance observations  derived from sparsely observed Riemannian functional data, while the covariance vector bundle provides a rigorous mathematical foundation for formulating such smoothing problems. The parallel transport and the bundle metric together make it possible to measure fidelity of fit to the covariance function. They also play a critical role in quantifying the quality of estimators for the covariance function. As an illustration, based on the proposed framework, we develop a local linear smoothing estimator for the covariance function, analyze its theoretical properties, and provide numerical demonstration via simulated and real datasets.  The intrinsic feature of the framework makes it applicable to not only Euclidean submanifolds but also manifolds without a canonical ambient space.

报告人简历:

姚方 北京大学讲席教授北大统计科学中心主任概率统计系主任数理统计学会IMSFellow美国统计学会ASAFellow2000年本科毕业于中国科技大学统计专业2003获得加利福尼亚大学戴维斯分校统计学博士学位曾任职于多伦多大学统计科学系终身教授现担任Canadian Journal of Statistics的主编至今担任9个国际统计学核心期刊编委包括统计学顶级期刊Journal of the American Statistical Association Annals of Statistics

欢迎感兴趣的师生参加!

 

                      菲律宾环球360注册账号

 

                         20211130