学术报告

当前位置: 首页 学术报告 正文
学术报告二十七: A nonconventional ergodic theorem for uniformly behaved in N-sequences

时间:2024-05-06 14:24

主讲人 刘园 讲座时间 2024.04.30 14:30-15:30
讲座地点 汇文楼1420 实际会议时间日 30
实际会议时间年月 2024.4

数学科学学院学术报告[2024] 027

(高水平大学建设系列报告907)


报告题目: A nonconventional ergodic theorem for uniformly behaved in N-sequences

报告人:刘园(南方科技大学

报告时间:2024年43014:30-15:30

报告地点:汇1420

报告内容:A nonconventional ergodic theorem for uniformly behaved in N-sequences

摘要:For a sequence of natural numbers a = (an)n∈N, we define what it means for the sequence a to be uniformly behaved in N as well as what it means for a topological dynamical system (X, f) to be a-mean Lyapunov stable (this class contains all equicontinuous dynamical systems). Our main result is that the mean partial sum of the a-orbit of f converges pointwise  if a is uniformly behaved in N and f is minimal, uniquely ergodic, and a-mean Lyapunov stable.

We give several examples of uniformly behaved in N sequences and connect our result to previous results in number theory. At the end we will discuss some open questions on this topic. This is joint work with my advisor Yunping Jiang.

欢迎师生参加!

报告邀请人:高延

                                         数学科学学院

                                          2024年4月28日