数学科学学院学术报告[2024] 040号
(高水平大学建设系列报告920号)
报告题目:Euler-Poisson equations with sonic boundary: structural stability, quasi-neutral limits, relaxation-time limits
报告人: 梅茗(加拿大McGill大学及Champlain学院)
报告时间:2024年5月23日 16:00-17:00
报告地点:汇星楼514
内容摘要: In this talk, we present our series of studies on Euler-Poisson equations with sonic boundary. Sonic boundary is a critical boundary, which with the doping profile causes many difficulties for the structure of solutions. We first study the structural stability of steady subsonic/ transonic solutions, when the doping profile is a small perturbation. Then, we study the quasi-neutral limits as the Debye length is vanishing. Finally we present the result on relaxation time limit. The singularity at the boundary layers makes the study to be challenging.
报告人简介:梅茗教授,加拿大麦吉尔大学兼职教授、Champlain学院终身教授。梅教授研究方向为流体力学中偏微分方程和生物数学中时滞反应扩散方程研究,目前为多个SCI杂志编委,在偏微分方程领域中一流的数学杂志Archive Rational Math. Mech., SIAM J. Math. Anal., J. Differential Equations, Commun.PDEs 等学术刊物上公开发表论文100多篇,其中多篇论文为ESI高被引论文,被《美国数学评论》评为SIAM J. Math.Anal. 及 J. Differential Equations 的 top author。
欢迎师生参加!
报告邀请人:刘强
数学科学学院
2024年5月20日