科研成果 |
[19]. Yan Zhou, Ying Zhang, Minjiao Peng, Yaru Zhang, Yaohua Hu, Jianzhong Su and Jinfeng Xu. (2024). scDMV: a zero–one inflated beta mixture model for DNA methylation variability with scBS-seq data. Bioinformatics, 40(1), btad772.</br> [18]. Yan Zhou, Ruoxi Mei, Yichuan Zhao, Zongliang Hu and Mingtao Zhao. (2024). Orthogonality-based bias-corrected empirical likelihood inference for partial linear varying coefficient EV models with longitudinal data. Journal of Computational and Applied Mathematics, 443(115751)</br> [17]. Yan Zhou, Weiping Zhang, Hongmei Lin and Heng Lian. (2021). Partially linear functional quantile regression in a reproducing kernel Hilbert space. Journal of Nonparametric Statistics, 34:4, 789-803.</br> [16]. Yan Zhou, Minjiao Peng, Bin Yang, Tiejun Tong, Baoxue Zhang and Niansheng Tang*(2022). scDLC: a deep learning framework to classify large sample single-cell RNA-seq data. BMC Genomics, 23:504.</br> [15]. Liya Fu, Zhuoran Yang, Yan Zhou* and You-Gan Wang (2021). An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data. Lifetime Data Analysis, 27:679–709.</br> [14]. Mingtao Zhao, Xiaoli Xu, Yan Zhou* (2021). Model Estimation and Selection for Partial Linear Varying Coefficient EV Models with Longitudinal Data. Journal of Applied Statistics, DOI: 10.1080/02664763.2021.1904847</br> [13]. Yan Zhou, Bin Yang, Junhui, Wang, JiaDi Zhu* and Guoliang, Tian*. (2021). A scaling-free minimum enclosing ball method to detect differentially expressed genes for RNA-seq data. BMC Genomics, 22:479.</br> [12]. Jun Zhang, Bingqing Lin and Yan Zhou* (2021). Kernel density estimation for partial linear multivariate responses models. Journal of Multivariate Analysis, 185(104768).</br> [11]. Yan Zhou, Li Zhang, Jinfeng Xu, Jun Zhang and Xiaodong Yan (2021). Encoding the category to select the feature genes for single-cell RNA-seq classification. Statistics in Medicine, DOI: 10.1002/sim.9015</br> [10]. Jiadi Zhu, Ziyang Yuan, Lianjie Shu, Yan Zhou* (2021). Selecting Classification Methods for Small Samples of Next-Generation Sequencing Data. Frontier in Genetics, https://doi.org/10.3389/fgene.2021.642227</br> [9]. Jiaqi Liu, Hengqiang Zhao, Yan Zhou (second author), …. Jianzhong Su. (2021), Genome-wide cell-free DNA methylation analyses improve accuracy of non-invasive diagnostic imaging for early-stage breast cancer. Molecular Cancer. https://doi.org/10.1186/s12943-021-01330-w (SCI) (IF: 27).</br> [8]. Jun Zhang, Junpeng Zhu, Yan Zhou*, Xia Cui and Tao Lu (2020). Multiplicative regression models with distortion measurement errors, Statistical Papers, 61:2031–2057</br> [7]. Liya Fu, Zhuoran Yang, Mingtao Zhao and Yan Zhou*. (2019). Efficient parameter estimation for multivariate accelerated failure time model via the quadratic inference functions method. Random Matrices: Theory and Applications, 8(4): 1950013</br> [6]. Yan Zhou, Jiadi Zhu, Tiejun Tong, Junhui Wang and Jun Zhang. (2019). A statistical normalization method and differential expression analysis for RNA-seq data between different species. BMC Bioinformatics (IF: 2.3), 20:163.</br> [5]. Weihua Zhao, Yan Zhou*, Heng Lian. (2018). Time-varying Quantile Single-Index Model for Multivariate Responses. Computational Statistics & Data Analysis, 127: 32-49.</br> [4]. Yan Zhou, Baoxue Zhang, Tiejun Tong and Xiang Wan. (2018). Classifying next generation sequencing data using a zero-infated Poisson model, Bioinformatics (IF: 7.3), 34(8), 1329–1335.</br> [3]. Jun Zhang, Yan Zhou*, Bingqing Lin, Yao Yu. (2017), Estimation and hypothesis test on partial linear models with additive distortion measurement errors, Computational Statistics and Data Analysis (IF: 1.18), 112: 114-128.</br> [2]. Yan Zhou, Baoxue Zhang, Gaorong Li, Tiejun Tong and XiangWan. (2017), GD-RDA: A new regularized discriminant analysis for high dimensional data. Journal of Computational Biology (IF: 1.537), 24: 1-13.</br> [1]. Bo Zhang, Yan Zhou (Co-first author), Nan Lin ....Baoxue Zhang and Ting Wang. (2013), Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Research. 23:1522-1540. 10.1101/gr.156539.113 |
科研项目 |
[6] 广东省自然科学面上项目(15万),主持,2024/01-2026/12;</br> [5] 广东省自然科学面上项目(10万),主持,2023/01-2025/12;</br> [4] 国家自然科学面上项目(52万),主持,2021/01-2024/12;</br> [3] 国家自然科学基金青年科学基金项目(24万),主持,2018/01-2020/12;</br> [2] 国家自然科学基金数学天元青年基金项目(3万),主持,2016/01-2016/12;</br> [1] 广东省自然科学基金博士科研启动项目(10万),主持,2016/06-2019/06; |